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Abstract
Using a nonequilibrium Green function approach, we systematically investigate the current
induced spin polarization (CISP) in a two-dimensional heavy-hole system with cubic Rashba
spin–orbit coupling, driven by in-plane electric and magnetic fields. We find that when a
magnetic field is applied along the direction of electric field, the longitudinal conductivity drops
monotonously with an increase of magnetic-field strength or of hole density. The spin
polarization along the electric-field direction is just the Pauli paramagnetism and it
quadratically increases with an increase of hole density. The nonvanishing out-of-plane
component of spin polarization emerges for both short-range and long-range disorders, and it
changes sign with the variation of magnetic field, especially for long-range hole-impurity
scattering. In the magnetic-field dependences of this out-of-plane CISP and of the in-plane
CISP perpendicular to the electric field, there are singular magnetic fields, below or above
which the effects of magnetic field are completely different.

1. Introduction

Generation and control of spins in semiconductors are
fundamental issues in the emerging field of spintronics [1, 2].
The conventional spin injection from ferromagnetic metal
into semiconductor is not an efficient way because most of
the spin polarization will be lost at the interface due to the
large conductivity mismatch [3]. The discovery of current
induced spin polarization (CISP) [4], which shows up as a
spatially homogeneous spin polarization in two-dimensional
(2D) systems due to an in-plane charge current, discloses the
possibility of generation of spin polarization directly by an
electric field rather than a magnetic field. It is noted that
the CISP was predicted first by Dyakonov and Perel [4] in
systems with spin–orbit coupling (SOC) induced by electron-
impurity scattering. Recently, many novel phenomena in
systems with intrinsic SOC, such as the spin Hall effect [5–8],
have been observed. This stimulates a great deal of theoretical

investigation on the CISP in systems with intrinsic spin–orbit
interaction [9–15].

The previous theoretical research on the CISP mainly
focused on the 2D electron system with k-linear Rashba
SOC. In this system, only the in-plane CISP component
perpendicular to the electric field is nonvanishing and it
is proportional to the spin–orbit splitting constant [9, 11].
Considering realistic electron–phonon and electron-impurity
scattering, Wang et al have studied the CISP generated by
the nonlinear high electric field [14]. They found that the
CISP saturates at high electric field and it descends at elevated
temperature. On the other hand, the previous studies on the
spin Hall effect indicate that the motion of spin in systems with
a SOC nonlinearly depending on k is completely different from
that in linear Rashba SOC systems [15–17]. Hence, the same
situation is expected for CISP. Liu et al investigated the CISP in
the 2D hole gas with structure inversion asymmetry [15]. They
found that CISP is linearly dependent on the Fermi energy for
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low hole density and it is suppressed or even changes its sign in
the heavy doping regime. Recently, CISP for two-dimensional
electron systems with a general SOC has been proposed [18].
Experimentally, the CISP was first measured by Silov et al in a
2D hole system [19] and later Sih et al observed the CISP for
2D electron gas in an AlGaAs quantum well [20].

In the last few years, many interesting phenomena about
CISP have been predicted, including the resonant CISP with
the application of an ac electric field [21] or a perpendicular
magnetic field [22], the anisotropy of CISP with linear Rashba
and Dresselhaus SOC [12], etc. It was also shown that an
in-plane magnetic field can yield a nonzero out-of-plane spin
polarization in a Rashba spin–orbit-coupled 2D electron gas
with a nonparabolic energy band [13] or with long-range
electron-impurity scattering [23]. This nonvanishing out-of-
plane CISP leads to a nonvanishing spin Hall effect in the
presence of an in-plane magnetic field [17, 23]. Kato et al
experimentally observed a nonzero out-of-plane CISP with
a magnetic field applied along the electric field in strained
semiconductors [24]. A similar phenomenon has also been
reported in n-type ZnSe at room temperature [25]. So far,
theoretical investigations on out-of-plane CISP induced by an
in-plane magnetic field have been carried out mainly for the
linear Rashba model. Hence, a careful investigation on CISP
in a 2D hole gas with an external magnetic field applied in the
plane is required. It is noted that the ‘spin’ of a hole spinor is
actually a total angular momentum and the spintronics for hole
systems actually becomes the combination of spintronics and
orbitronics [15, 26].

The paper is organized as follows. In section 2, the
Hamiltonian and kinetic equation of a 2D heavy-hole gas
with in-plane electric and magnetic fields are presented. In
section 3, the CISP of a heavy-hole gas without magnetic field
is derived analytically, and the conductivity and the CISP in the
presence of magnetic field are evaluated numerically. Finally,
a brief summary is drawn in section 4.

2. Formalism

2.1. Hamiltonian

In the absence of magnetic field, the valence band of p-
doped bulk semiconductor, such as p-type GaAs, is fourfold
degenerate at the � point and it can be described by a 4 × 4
Luttinger Hamiltonian ĤL [27]. When an external magnetic
field is applied along the x direction, the Hamiltonian can be
written as

Ĥ = ĤL + ĤZ. (1)

Here, ĤZ is the Zeeman energy term and it is proportional to
the g-factor involving both the anisotropic and isotropic parts.
However, for the typical systems considered, the anisotropic
part of the g-factor is usually two orders of magnitude smaller
than the isotropic part, κ , and hence the anisotropic part can be
ignored [28]. Thus, ĤZ is given by

ĤZ = −2μBκ Ŝx Bx, (2)

with μB as the Bohr magneton, Bx as the strength of magnetic
field, and Ŝx as the x-component of spin 3

2 operator:

Ŝx = 1
2

⎛
⎜⎜⎝

0
√

3 0 0√
3 0 2 0

0 2 0
√

3
0 0

√
3 0

⎞
⎟⎟⎠ . (3)

It is noted that, here, the concept of spin actually refers to the
total angular momentum of the valence holes.

In 2D systems, the momentum kz is quantized due to
the confinement in the z direction and a gap between light-
and heavy-hole bands opens at the � point. The gap � =
2γ2〈k2

z 〉/m ≈ 2γ2(π/a)2/m [16, 29] (γ2 is the Luttinger
parameter and m is the mass of a free electron) depends on
the confinement scale a. In a sufficiently narrow quantum
well with low hole density, only the lowest subband of heavy
holes is occupied at low temperature and these holes can be
described by the cubic Rashba model [30, 31]. Recently,
this 2D heavy-hole gas with cubic Rashba SOC has been
extensively studied. In such heavy-hole systems, the spin Hall
effect [29, 31–35] and spin polarization [15, 36] have been
carried out theoretically, and the experimental observation of
the spin Hall effect was reported [8]. Moreover, controlled
spin rotation in a spin field-effect transistor setup [37] and
anisotropic magnetoresistance [38] were also studied.

By means of the truncation approximation and projection
perturbation method [15], the 4 × 4 Hamiltonian (1) reduces to
a 2 × 2 matrix H̃ :

H̃ = HR + HZ, (4)

with HR as the cubic Rashba Hamiltonian given by

HR = k2

2mh
+ iα(k3

−σ+ − k3
+σ−), (5)

and HZ as the Zeeman energy taking the form

HZ = −2μBκ S̃x Bx . (6)

In these equations, mh is the effective mass of a heavy hole, α is
the Rashba coefficient, k± = kx ± iky , σ± = 1

2 (σx ± σy) with
k = (kx, ky) = k(cos θk, sin θk) as the 2D hole momentum
and σ = (σx , σy, σz) as the Pauli matrices. The spin operators
in the cubic Rashba model S̃ = (S̃x , S̃y, S̃z) are given by [15]

S̃x =
( −S0ky S1k2−

S1k2+ −S0ky

)
, (7)

S̃y =
(

S0kx −iS1k2−
iS1k2+ S0kx

)
, (8)

S̃z = 3
2σz . (9)

Here S0 and S1 are the coefficients depending on the
Luttinger parameters and the material structure parameters
of the heterojunction [15]. It is noted that, for narrow-gap
semiconductor systems, the cubic Rashba SOC strength can
be controlled by applying a gate voltage [39].
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Taking the local unitary transformation

Uk = 1√
2

(
1 1

ie3iχk −ie3iχk

)
, (10)

with χk determined by

tan 3χk = αk sin 3θk − γ S1 cos 2θk

αk cos 3θk + γ S1 sin 2θk

. (11)

Hamiltonian (4) can be diagonalized and reduces to H =
diag[εk1, εk2] in the helicity basis. εkμ is the eigenenergy

εkμ = k2

2mh
+ γ S0ky + (−1)μεM , (12)

with εM =
√

α2k6 + γ 2S2
1 k4 − 2αγ S1k5 sin θk, μ = 1, 2 as

the helix band index, and γ = 2κμB Bx . The corresponding
eigenfunction is |kμ〉 = 1/

√
2[1,−i(−1)μe3iχk ]T . It is noted

from equation (12) that, in the presence of magnetic field, the
energy spectrum of a 2D heavy-hole gas is still degenerate
at the � point. Considering the fact that the spin operator
S̃x is linearly dependent on the magnitude of the wavevector,
this feature can be confirmed from the Hamiltonian (4). In
contrast to this, the degeneracy at the � point in a 2D electron
system with a k-linear Rashba SOC is removed [40]. Note that
the magnetic field is included in the energy spectrum εkμ and
the angle χk. The energy spectrum (12) is unstable at large
wavevector due to the fact that the cubic Rashba model is valid
only for small k. The lower energy branch is bounded only for

k � 1

6α

[
1

mh
− 2γ S1 +

√(
1

mh
− 2γ S1

)2

− 12αγ S0

]
, (13)

where the Zeeman energy satisfies γ � 1
2S2

1
[ S1

mh
+ 3αS0 −√

9α2S2
0 + 6α S0 S1

mh
]. In the absence of magnetic field, the

bound condition, equation (13), reduces to the one presented
in [31].

2.2. Kinetic equation

To carry out the transport quantities, such as conductivity and
spin polarization, it is necessary to derive the kinetic equation
for a lesser Green function. Following the procedure presented
in [17] and [32], we first carry out the Dyson equations for
the real-space lesser Green functions in the spin basis and then
introduce the center-of-mass time, T = (t1 + t2)/2, and the
relative time, τ = t1 −t2. After that, the Fourier and the unitary
transformations are performed and the equation reduces to the
kinetic equation in the helicity basis. We find that, for weak
in-plane dc electric field, the distribution function ρ(k) =
−iG<(k, T, τ = 0) obeys the equation,

−eE·∇kρ
(0)−3i

2
eE·∇kχk[ρ(0), σx ]+iεM [σz, ρ] = Isc, (14)

with ρ(0) as the equilibrium distribution function,

ρ(0) =
(

nF(εk1) 0
0 nF(εk2)

)
. (15)

In equation (14), nF(x) stands for the Fermi distribution
function and Isc is the scattering term [41]

Isc = −
∫ T

−∞
dτ ′[�>G< + G<�> − �<G> − G>�<]

× (T, τ ′)(τ ′, T ). (16)

G< (G>) and �< (�>), respectively, are the lesser (greater)
nonequilibrium Green functions and self-energies. In the
self-consistent Born approximation, the self-energies �<,> ≡
U †

k�̌<,>Uk (�̌<,>(k, T, τ ) = ∑
q |u(k − q)|2Ǧ<,>(q, T, τ )

with Ǧ< (Ǧ>) and �̌< (�̌>) are, respectively, the lesser
(greater) Green functions and self-energies in spin basis) are
given by

�<,>(k, T, τ ) = 1
2

∑
q

|u(k − q)|2{�11G<,>

+ �12σx G<,>σx + i�̄11[σx, G<,>]}. (17)

Here �μμ′ = 1 + (−1)μ+μ′
cos(3χk − 3χq), �̄μμ′ =

(−1)μ
′
sin(3χk − 3χq), and u(k) is the scattering matrix. For

shortness, in the above equation the arguments (q, T, τ ) of
Green functions G<,> are dropped.

Without loss of generality, we consider an electric field
along the x direction, E = E0 x̂ . To further simplify the
scattering integral, we use the generalized Kadanoff–Baym
ansatz to express the time development of a two-time Green
function with its equal-time value [42] and the lowest gradient
expansion is taken [43]. Finally, we find that, to the first order
of electric field, the solution of equation (14) can be written as
a sum of two terms, ρ(1) + ρ(2). The first term, ρ(1), takes the
form

ρ
(1)

12 = ρ
(1)

21 = 3eE0

4εM

∂χk

∂kx
[nF(εk1) − nF(εk2)]. (18)

Ignoring the collisional broadening, the second term, ρ(2), is
determined by equations of the form

−eE0
∂nF(εkμ)

∂kx
= π

∑
qμ′

|u(k − q)|2�μμ′

× [ρ(2)
μμ(k) − ρ

(2)
μ′μ′(q)]δ(εkμ − εqμ′), (19)

4εMReρ(2)

12 (k) = π
∑
qμμ′

|u(k − q)|2�̄μμ′

× [ρ(2)
μμ(k) − ρ

(2)

μ′μ′(q)]δ(εkμ − εqμ′). (20)

Here Reρ(2)
12 (k) is the real part of the off-diagonal element of

distribution function, ρ
(2)

12 (k). One can see that in the above
kinetic equations the magnetic field is not shown explicitly.
The magnetic field influences the distribution function through
the energy εkμ and the angle χk.

In the helicity basis, the spin polarization, S =∑
k Tr[ρ(k)U †

kS̃Uk], can be expressed as

Sx =
∑
kμ

[−S0k sin θk

+ (−1)μS1k2 sin(3χk − 2θk)]ρμμ(k), (21)

Sy =
∑
kμ

[S0k cos θk

− (−1)μS1k2 cos(3χk − 2θk)]ρμμ(k), (22)

Sz = 3
∑

k

Reρ12(k), (23)
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and the average velocity of heavy holes is given by

v = 1

N

∑
kμ

∇kεkμρμμ(k), (24)

with N as the hole density.
It should be noted that, in the kinetic equations presented

above, the carrier-impurity scattering is taken into account in
the self-consistent Born approximation and, in the impurity-
density expansion of Isc, only the lowest order term is
considered. Hence, the derived kinetic equations are valid in
the clean limit regime. Further, we assume that the electric
field is weak but the magnetic field may be large.

From equation (18) we see that ρ(1) only contains
nonvanishing off-diagonal elements. It is independent of any
impurity scattering and leads to a dc-field-induced transition.
The diagonal elements of ρ(2) are inversely proportional
to impurity density, while its off-diagonal elements are
independent of impurity density. Correspondingly, the x-
component of CISP, Sx , can be expressed as Sx = S(0)

x +
S(2)

x with S(0)
x and S(2)

x relating to the equilibrium distribution
function ρ(0) and impurity-related distribution function ρ(2),
respectively. In the same manner, the y-component of CISP,
Sy , can be written as Sy = S(0)

y + S(2)
y (S(0)

y and S(2)
y rely

on ρ(0) and ρ(2), respectively). However, using cos(3χk −
2θk) ≡ αk3 cos θk/εM , the angle integration of wavevector k

yields the vanishing of the equilibrium y-component of spin
polarization, S(0)

y = 0. Hence, the spin polarization Sy comes
from a collisional process associated with the hole states near
the Fermi surface. The out-of-plane z-component of CISP Sz

can be expressed as Sz = S(1)
z + S(2)

z . S(1)
z and S(2)

z relate
to the impurity-independent distribution function ρ(1) and the
collision-related distribution function ρ(2), respectively.

From the kinetic equations (19) and (20) as well as
the CISP expressions (22) and (23), it follows that the z-
component of CISP, Sz , is independent of the impurity density,
while the y-component of CISP, Sy , is proportional to the
inverse of impurity density. Similar to the origin of disorder-
mediated spin Hall conductivity [32], S(2)

z can be understood
as the result of a disorder-mediated process.

3. Conductivity and spin polarization

3.1. Absence of magnetic field

We first examine the spin polarization of a 2D heavy-hole
gas in the absence of magnetic field, considering an impurity
scattering with δ-potential, u(k − q) = u0. In this case,
the quantities εkμ, εM , and χk reduce to ε

(0)
kμ = k2

2m + αk3,
εm = αk3, and θk, respectively. From equation (19), it follows
that the diagonal elements of the distribution function ρ(2)(k)

take the form

ρ
(2)
11 (k) = 2eE0

u2
0

�1
kf1
�1

+ kf2
�2

cos θkδ(ε
(0)
k1 − εf), (25)

ρ
(2)

22 (k) = 2eE0

u2
0

�2
kf1
�1

+ kf2
�2

cos θkδ(ε
(0)

k2 − εf), (26)

with εf as the Fermi energy, kf1 and kf2 as the Fermi
wavevectors for the 2D heavy-hole system in the absence of
magnetic field, and

�μ =
∣∣∣∣
∂ε

(0)
kμ

∂k

∣∣∣∣
k=kfμ

.

From equation (20) we find that the off-diagonal elements of
the second term of the distribution function vanish

Reρ(2)

12 (k) = Reρ(2)

21 (k) = 0. (27)

It is noted that the vanishing of these off-diagonal elements of
the distribution function leads to the spin Hall effect, which is
robust against the impurity, in the cubic Rashba model [16, 32].

Substituting the obtained distribution function into
equation (24), we find that the longitudinal conductivity σxx =
Nevx/E0, takes the form

σxx = e2

2πu2
0

kf1�1 + kf2�2
kf1
�1

+ kf2
�2

. (28)

For weak spin–orbit splitting αk3
f1, αk3

f2 
 εf, the above
longitudinal conductivity reduces to

σxx ≡ σ0 = e2εfτ

π
, (29)

with τ = 1/mu2
0 as the relaxation time. In the same manner,

we can obtain the spin polarization in the absence of magnetic
field:

Sx0 =
∑
kμ

[−S0k + (−1)μS1k2] sin θkρμμ(k), (30)

Sy0 =
∑
kμ

[S0k − (−1)μS1k2] cos θkρμμ(k), (31)

Sz0 = 3
∑

k

Reρ12(k). (32)

Performing the angle integral, we find that only the y-
component of spin polarization is nonvanishing and it takes the
form

Sy0 = eE0

2πu2
0

4π S0 N + S1(k3
f1 − k3

f2)
kf1
�1

+ kf2
�2

. (33)

For weak spin–orbit coupling, equation (33) can be simplified
as

Sy0 = eE0 Nτ S0. (34)

It is noted that in the case of weak SOC, the expressions
of conductivity and spin polarization that we obtained are in
agreement with the results in the previous literature [15].

3.2. Presence of magnetic field

When an external magnetic field is applied along the x
direction, the kinetic equations (19) and (20) no longer can
be solved analytically. We perform a numerical calculation to
study the conductivity and spin polarization in a typical 2D
heterojunction with Luttinger parameters chosen from [15].
The heavy-hole density is chosen to be less than 4.0 ×

4
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1010 cm−2, and we set the well width a = 8.3 nm. The hole
density is so dilute that only the lowest heavy-hole subbands
are occupied. The energy gap � between the light-hole and
the heavy-hole bands is large and hence the transitions between
different hole states at low temperature can be ignored.

3.2.1. Spin orientation. In the presence of an in-plane
magnetic field, the expectation value of the spin for the μth
helix band, i.e. the spin orientation, reads

〈kμ|S̃x |kμ〉 = −S0k sin θk + (−1)μS1k2 sin(3χk − 2θk),

(35)
〈kμ|S̃y |kμ〉 = S0k cos θk−(−1)μS1k2 cos(3χk−2θk), (36)

〈kμ|S̃z |kμ〉 = 0. (37)

We see that the spin orientation is always in the x–y plane
and the out-of-plane component vanishes. We define the in-
plane spin orientation Sμ(k) as Sμ(k) ≡ 〈kμ|S̃x |kμ〉x̂ +
〈kμ|S̃y |kμ〉ŷ. From equations (35) and (36) it follows that
the magnitude of in-plane spin orientation, Sμ(k), is given by

Sμ(k) = k
√

S2
0 + S2

1 k2 − 2(−1)μS0S1k cos(3χk − 3θk).

(38)
The spin orientations for different helix bands at Fermi

contours in the absence of both the electric field and scattering
are plotted in figure 1. For heavy-hole systems with relatively
low density and relatively small SOC, the Fermi radii of
two helix bands become almost equal. In the absence of
magnetic field, the spin orientations of two helix bands are
perpendicular to the 2D momentum and they orient along the
same direction, in agreement with the result given by Liu
et al [15]. However, the total spin polarization vanishes. In
the presence of an in-plane magnetic field applied along the
x direction, spins of different helix bands orient in different
directions. For the external magnetic field with magnitude
γ = 0.5γ0 (γ0 = αkf

S1
and it is equal to 0.195 meV for the

system that we studied, kf = √
2π N is the Fermi wavevector

for spin degenerate systems), the magnitude of spin orientation
at the Fermi contour S1(kF1) is greater than S2(kF2). The
total spin polarization is along the direction of the magnetic
field, indicating the Pauli paramagnetism for a 2D heavy-hole
system.

Although the distinction between two Fermi contours is
very small in the case that we studied, it plays a dominant role
in the spin-related transport phenomena, such as the spin Hall
effect [32–35] and CISP [9–15]. In the presence of both the
electric field and hole-impurity scattering, the departures from
equilibrium distribution for different helix bands are different,
leading to nonvanishing of the y-component as well as the out-
of-plane component of spin polarization.

3.2.2. Short-range scattering. We first consider the CISP and
conductivity for δ-form short-range impurity scattering with
relaxation time τ = 1 ps. The results are shown in figures 2
and 3.

In figure 2, we plot the dependences of σxx , Sx , and
Sy on the Zeeman energy γ . From figure 2(a) we see that

Figure 1. Spin orientations for different helix bands at Fermi
contours in the absence of electric field and scattering for γ = 0 (a)
and γ = 0.5γ0 (b). The blue (gray) and black arrows indicate
S1(kF1) and S2(kF2), respectively. kF1 and kF2 are two
angle-dependent Fermi wavevectors in the presence of a magnetic
field. The heavy-hole density N = 1.0 × 1010 cm−2. Here γ0 = αkf

S1

and kf = √
2π N . For these material parameters, it is found that

γ0 = 0.195 meV.

(This figure is in colour only in the electronic version)

the longitudinal conductivity decreases monotonously with
increase of the magnetic field or of the degree of doping.
For Sx , numerical evaluation shows that the collision-related
part S(2)

x vanishes and the total Sx arises from the equilibrium
distribution ρ(0), in which all holes below the Fermi sea join.
The x-component of spin polarization enhances with increase
of the magnetic field or of the heavy-hole density. To lowest
order of magnetic field, spin polarization Sx can be calculated
analytically

Sx = S(0)
x = γ

4π

[
1

3α
S2

1 (k
3
f1 − k3

f2)

+ kf1

�1
(S0kf1 + S1k2

f1)
2 + kf2

�2
(S0kf2 + S1k2

f2)
2

]
. (39)

For weak spin–orbit coupling, it reduces to

Sx = mh N(S2
0 + 4π N S2

1 )γ . (40)

This Sx is the Pauli paramagnetism for the cubic Rashba model.
It is noted that, in our case, the Pauli paramagnetism relies on
the Luttinger parameters or on the heavy-hole spin splitting and
it quadratically increases with the hole density. This is different
from the Pauli paramagnetism in the k-linear Rashba model

5
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Figure 2. Magnetic-field dependences of longitudinal conductivity
σxx , and the x- and y-components of spin polarization. σ0 is the
conductivity in the absence of magnetic field. Sy0 is the y-component
of spin polarization in the absence of magnetic field and it is
determined by equation (34).

for a 2D electron system, where the Pauli paramagnetism takes
the same form as that of the spin degenerate electron system
and it is independent of the carrier density [13, 23]. In the
inset of figure 2(b), we plot the spin polarization given by
equation (40) (dash line) and the one determined by the kinetic
equations (solid line). We see that for weak field, these two
results coincide with each other. For large external magnetic
field, a slight difference appears. The spin polarization in the
x direction is just the Pauli paramagnetism, independent of the
electric field. Hence, there is no CISP in this direction.

In figure 2(c), the y-component of CISP is plotted as a
function of Zeeman energy. We see that this CISP component
shows the magnetic-field-mediated feature, analogous to the
case for the linear Rashba model [13, 23]. Obviously, there
exists a singular point γ0 for the y-component of CISP: for
γ < γ0, Sy is almost independent of the magnetic field, while
it strongly relies on γ for γ > γ0. With a rise of magnetic field
from γ0, Sy increases first and then saturates or even descends.
In the inset of figure 2(c), we plot the dependence of Sy on
magnetic field for γ < γ0. We see that for γ < γ0, Sy drops
with increase of magnetic field and reaches a minimum value
about 0.999 996Sy0. The strong asymmetrical behavior of Sy

below and above the singular point arises from the combined
effect of an in-plane magnetic field, hole-impurity scattering
and SOC, which can be understood further from figure 3.

In figure 3, the impurity-independent spin polarization
S(1)

z , disorder-mediated spin polarization S(2)
z , and the total

spin polarization Sz are plotted as functions of the magnetic

Figure 3. The impurity-independent spin polarization S(1)
z ,

disorder-mediated spin polarization S(2)
z , and the total spin

polarization Sz versus magnetic field for various heavy-hole
densities.

field for various heavy-hole densities. We see that, for the
short-range impurity scattering, all these three z-components
of spin polarization do not vanish. This is different from
the case in the 2D k-linear Rashba model [13, 23]. In the
2D electron system with k-linear Rashba SOC, the impurity-
independent z-component of CISP is always zero and the
disorder-mediated one exists only for long-range impurity
scattering or a nonparabolic energy spectrum [13, 23]. It is
noted that, in the heavy-hole systems, the disorder-unrelated
out-of-plane CISP, S(1)

z , comes from the interband transition
process, which is associated with the energy separation of two
helix bands and is independent of any hole-impurity scattering.
All holes below the Fermi energy have probability to transit
from one band to another. Hence, the nonvanishing interband
polarization appears and leads to nonvanishing S(1)

z . Therefore,
S(1)

z possesses an intrinsic feature [44]. However, S(2)
z relates

only to the hole states near the Fermi surface. A similar picture
can be found in the studies of spin Hall effect in 2D systems
with SOC [32].

From figure 3, we also see that, for external magnetic
field above the singular point γ0, S(2)

z is almost one order
of magnitude smaller than S(1)

z and hence the last one plays
a dominant role in the contribution to the total CISP. In the
insets of figures 3(a)–(c) (where the vertical coordinate is
Sz/E0 with the units 1010κμB cm V−1, 108κμB cm V−1 and

6
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Figure 4. Longitudinal conductivity σxx and y-component of spin
polarization as functions of external magnetic field for long-range
impurity scattering. σ re

0 and Sre
y0 are the conductivity and the

y-component of spin polarization in the absence of magnetic field for
long-range impurity scattering, respectively. s = 100 Å.

1010κμB cm V−1, respectively), we also show the magnetic-
field dependences of S(1)

z , S(2)
z , and Sz below the singular point

for N = 1.0×1010 cm−2. It is clear that the disorder-mediated
CISP is two orders of magnitude less than the impurity-
independent one, and the total CISP is mainly determined
by the impurity-independent term when γ /γ0 < 1. Near
the regime of the singular point, these z-components of CISP
change their signs. However, their magnitudes below γ0 are
two orders of magnitude smaller than those above the singular
point. This is due to the combined effect of an in-plane
magnetic field, spin–orbit splitting, and disorder on CISP. The
strong distinction between the negative and positive magnitude
of the CISP is in vivid contrast against the one for the 2D
electron gas with linear Rashba SOC, in which Sz is an odd
function with respect to the external magnetic field [13].

The existence of a singular point in the magnetic-field
dependences of Sy and Sz can be understood as follows. At
singular point γ0, εM vanishes at the Fermi wavevector kf

and θk = π/2 for the relatively weak-SOC system. At the
same time, two helix energy spectra εkμ become degenerate
and a strong interband transition process occurs. However,
for the linear Rashba model, such degeneracy of energy bands
does not exist for nonvanishing magnetic field [40]. Hence,
in the linear Rashba model, the sudden change of the value
of CISP does not occur. From equation (39), we see that Sx

does not relate to the interband transition process and hence
the sudden value change does not take place for Sx . For a
typical heterojunction with Luttinger κ = 4 [45], the singular
magnetic field is about 0.42 T, which is an ordinary magnetic

Figure 5. The disorder-mediated spin polarization S(2)
z and the total

spin polarization Sz versus magnetic field for long-range impurity
scattering.

field in experiment. Note that the singular point γ0 can be
used to experimentally determine the Rashba parameters: α =
γ0S1/kf.

3.2.3. Long-range scattering. For long-range disorders, the
additional momentum dependence of the scattering matrix may
produce rich phenomena. We consider a Coulomb interaction
between the 2D heavy holes and the charged impurities located
at a distance s. The scattering matrix takes the form |u(q)|2 �
nie−2sq I (q)2 [46], with I (q) as the form factor, ni as the
impurity density. In calculation, s and ni are chosen to be
s = 100 Å and ni = 0.15 N, respectively.

In figure 4, the total conductivity and y-component of
spin polarization are plotted as functions of magnetic field
for various heavy-hole densities in the presence of long-range
scattering. σ re

0 and Sre
y0 are, respectively, the conductivity and

the y-component of CISP in the absence of magnetic field
for this remote hole-impurity scattering. We see that the
conductivity drops with increase of the external magnetic field
and of the hole density. This is similar to the case for δ-form
short-range impurity scattering. For γ > γ0, the dependence
of spin polarization on magnetic field also has the behavior,
similar to the case of short-range scattering. However, near the
small regime of γ ∼ γ0, the spin polarization may be less than
Sre

y0.
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In figure 5, we plot the magnetic-field dependences
of disorder-mediated spin polarization S(2)

z and the total
spin polarization Sz in the presence of long-range impurity
scattering. It is clear that the degree of asymmetry for the
magnitude of the z-component of CISP below and above the
singular point is suppressed. The disorder-mediated CISP
below the singular point has a minus sign with the magnitude of
the same order as the one above γ0, leading to the clear negative
total CISP observed in figure 5(b). It is noted that the disorder-
mediated z-component of CISP, S(2)

z , is independent of ni.

4. Conclusions

In conclusion, the CISP for a 2D heavy-hole gas in the presence
of in-plane magnetic field has been investigated. We found
that the x-component of spin polarization is just the Pauli
paramagnetism, independent of the external electric field, and
it increases quadratically with increase of hole density. The
out-of-plane spin polarization appears for both short-range and
long-range disorders. It is clear that the collision-independent
CISP S(1)

z is nonvanishing and it arises from the dc-field-
induced transition between two helix bands. In the magnetic-
field dependences of y- and z-components of CISP there exists
a singular point, below or above which the behavior of the
CISP is completely asymmetrical. However, the long-range
impurity scattering can reduce the degree of this asymmetry
and an evident negative z-component of CISP is obtained.

Finally, we expect that the predicted phenomena
in this paper merit attempts at experimental verification
by such methods as Kerr rotation [7, 24] or polarized
photoluminescence technology [19].
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Iannaccone G 2004 Phys. Rev. B 69 045304
[38] Papadakis S J, De Poortere E P, Shayegan M and

Winkler R 2000 Phys. Rev. Lett. 84 5592
[39] Lu J P, Yau J B, Shukla S P, Shayegan M, Wissinger L,
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